Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Neural Eng ; 21(1)2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38232377

RESUMO

Objective.Cortical function is under constant modulation by internally-driven, latent variables that regulate excitability, collectively known as 'cortical state'. Despite a vast literature in this area, the estimation of cortical state remains relatively ad hoc, and not amenable to real-time implementation. Here, we implement robust, data-driven, and fast algorithms that address several technical challenges for online cortical state estimation.Approach. We use unsupervised Gaussian mixture models to identify discrete, emergent clusters in spontaneous local field potential signals in cortex. We then extend our approach to a temporally-informed hidden semi-Markov model (HSMM) with Gaussian observations to better model and infer cortical state transitions. Finally, we implement our HSMM cortical state inference algorithms in a real-time system, evaluating their performance in emulation experiments.Main results. Unsupervised clustering approaches reveal emergent state-like structure in spontaneous electrophysiological data that recapitulate arousal-related cortical states as indexed by behavioral indicators. HSMMs enable cortical state inferences in a real-time context by modeling the temporal dynamics of cortical state switching. Using HSMMs provides robustness to state estimates arising from noisy, sequential electrophysiological data.Significance. To our knowledge, this work represents the first implementation of a real-time software tool for continuously decoding cortical states with high temporal resolution (40 ms). The software tools that we provide can facilitate our understanding of how cortical states dynamically modulate cortical function on a moment-by-moment basis and provide a basis for state-aware brain machine interfaces across health and disease.


Assuntos
Algoritmos , Interfaces Cérebro-Computador , Fenômenos Eletrofisiológicos , Aprendizado de Máquina , Software
3.
Front Neurosci ; 17: 1188336, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965219

RESUMO

Background and purpose: Deep learning algorithms for segmentation of multiple sclerosis (MS) plaques generally require training on large datasets. This manuscript evaluates the effect of transfer learning from segmentation of another pathology to facilitate use of smaller MS-specific training datasets. That is, a model trained for detection of one type of pathology was re-trained to identify MS lesions and active demyelination. Materials and methods: In this retrospective study using MRI exams from 149 patients spanning 4/18/2014 to 7/8/2021, 3D convolutional neural networks were trained with a variable number of manually-segmented MS studies. Models were trained for FLAIR lesion segmentation at a single timepoint, new FLAIR lesion segmentation comparing two timepoints, and enhancing (actively demyelinating) lesion segmentation on T1 post-contrast imaging. Models were trained either de-novo or fine-tuned with transfer learning applied to a pre-existing model initially trained on non-MS data. Performance was evaluated with lesionwise sensitivity and positive predictive value (PPV). Results: For single timepoint FLAIR lesion segmentation with 10 training studies, a fine-tuned model demonstrated improved performance [lesionwise sensitivity 0.55 ± 0.02 (mean ± standard error), PPV 0.66 ± 0.02] compared to a de-novo model (sensitivity 0.49 ± 0.02, p = 0.001; PPV 0.32 ± 0.02, p < 0.001). For new lesion segmentation with 30 training studies and their prior comparisons, a fine-tuned model demonstrated similar sensitivity (0.49 ± 0.05) and significantly improved PPV (0.60 ± 0.05) compared to a de-novo model (sensitivity 0.51 ± 0.04, p = 0.437; PPV 0.43 ± 0.04, p = 0.002). For enhancement segmentation with 20 training studies, a fine-tuned model demonstrated significantly improved overall performance (sensitivity 0.74 ± 0.06, PPV 0.69 ± 0.05) compared to a de-novo model (sensitivity 0.44 ± 0.09, p = 0.001; PPV 0.37 ± 0.05, p = 0.001). Conclusion: By fine-tuning models trained for other disease pathologies with MS-specific data, competitive models identifying existing MS plaques, new MS plaques, and active demyelination can be built with substantially smaller datasets than would otherwise be required to train new models.

4.
Radiol Artif Intell ; 4(1): e200152, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35146430

RESUMO

PURPOSE: To assess how well a brain MRI lesion segmentation algorithm trained at one institution performed at another institution, and to assess the effect of multi-institutional training datasets for mitigating performance loss. MATERIALS AND METHODS: In this retrospective study, a three-dimensional U-Net for brain MRI abnormality segmentation was trained on data from 293 patients from one institution (IN1) (median age, 54 years; 165 women; patients treated between 2008 and 2018) and tested on data from 51 patients from a second institution (IN2) (median age, 46 years; 27 women; patients treated between 2003 and 2019). The model was then trained on additional data from various sources: (a) 285 multi-institution brain tumor segmentations, (b) 198 IN2 brain tumor segmentations, and (c) 34 IN2 lesion segmentations from various brain pathologic conditions. All trained models were tested on IN1 and external IN2 test datasets, assessing segmentation performance using Dice coefficients. RESULTS: The U-Net accurately segmented brain MRI lesions across various pathologic conditions. Performance was lower when tested at an external institution (median Dice score, 0.70 [IN2] vs 0.76 [IN1]). Addition of 483 training cases of a single pathologic condition, including from IN2, did not raise performance (median Dice score, 0.72; P = .10). Addition of IN2 training data with heterogeneous pathologic features, representing only 10% (34 of 329) of total training data, increased performance to baseline (Dice score, 0.77; P < .001). This final model produced total lesion volumes with a high correlation to the reference standard (Spearman r = 0.98). CONCLUSION: For brain MRI lesion segmentation, adding a modest amount of relevant training data from an external institution to a previously trained model supported successful application of the model to this external institution.Keywords: Neural Networks, Brain/Brain Stem, Segmentation Supplemental material is available for this article. © RSNA, 2021.

5.
Neuroimage Clin ; 31: 102769, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34333270

RESUMO

Delineation and quantification of normal and abnormal brain tissues on Magnetic Resonance Images is fundamental to the diagnosis and longitudinal assessment of neurological diseases. Here we sought to develop a convolutional neural network for automated multiclass tissue segmentation of brain MRIs that was robust at typical clinical resolutions and in the presence of a variety of lesions. We trained a 3D U-Net for full brain multiclass tissue segmentation from a prior atlas-based segmentation method on an internal dataset that consisted of 558 clinical T1-weighted brain MRIs (453/52/53; training/validation/test) of patients with one of 50 different diagnostic entities (n = 362) or with a normal brain MRI (n = 196). We then used transfer learning to refine our model on an external dataset that consisted of 7 patients with hand-labeled tissue types. We evaluated the tissue-wise and intra-lesion performance with different loss functions and spatial prior information in the validation set and applied the best performing model to the internal and external test sets. The network achieved an average overall Dice score of 0.87 and volume similarity of 0.97 in the internal test set. Further, the network achieved a median intra-lesion tissue segmentation accuracy of 0.85 inside lesions within white matter and 0.61 inside lesions within gray matter. After transfer learning, the network achieved an average overall Dice score of 0.77 and volume similarity of 0.96 in the external dataset compared to human raters. The network had equivalent or better performance than the original atlas-based method on which it was trained across all metrics and produced segmentations in a hundredth of the time. We anticipate that this pipeline will be a useful tool for clinical decision support and quantitative analysis of clinical brain MRIs in the presence of lesions.


Assuntos
Imageamento por Ressonância Magnética , Neuroimagem , Encéfalo/diagnóstico por imagem , Substância Cinzenta , Humanos , Redes Neurais de Computação
6.
Radiol Artif Intell ; 3(3): e200204, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34136817

RESUMO

PURPOSE: To develop and validate a neural network for automated detection and segmentation of intracranial metastases on brain MRI studies obtained for stereotactic radiosurgery treatment planning. MATERIALS AND METHODS: In this retrospective study, 413 patients (average age, 61 years ± 12 [standard deviation]; 238 women) with a total of 5202 intracranial metastases (median volume, 0.05 cm3; interquartile range, 0.02-0.18 cm3) undergoing stereotactic radiosurgery at one institution were included (January 2017 to February 2020). A total of 563 MRI examinations were performed among the patients, and studies were split into training (n = 413), validation (n = 50), and test (n = 100) datasets. A three-dimensional (3D) U-Net convolutional network was trained and validated on 413 T1 postcontrast or subtraction scans, and several loss functions were evaluated. After model validation, 100 discrete test patients, who underwent imaging after the training and validation patients, were used for final model evaluation. Performance for detection and segmentation of metastases was evaluated using Dice scores, false discovery rates, and false-negative rates, and a comparison with neuroradiologist interrater reliability was performed. RESULTS: The median Dice score for segmenting enhancing metastases in the test set was 0.75 (interquartile range, 0.63-0.84). There were strong correlations between manually segmented and predicted metastasis volumes (r = 0.98, P < .001) and between the number of manually segmented and predicted metastases (R = 0.95, P < .001). Higher Dice scores were strongly correlated with larger metastasis volumes on a logarithmically transformed scale (r = 0.71). Sensitivity across the whole test sample was 70.0% overall and 96.4% for metastases larger than 6 mm. There was an average of 0.46 false-positive results per scan, with the positive predictive value being 91.5%. In comparison, the median Dice score between two neuroradiologists was 0.85 (interquartile range, 0.80-0.89), with sensitivity across the test sample being 87.9% overall and 98.4% for metastases larger than 6 mm. CONCLUSION: A 3D U-Net-based convolutional neural network was able to segment brain metastases with high accuracy and perform detection at the level of human interrater reliability for metastases larger than 6 mm.Keywords: Adults, Brain/Brain Stem, CNS, Feature detection, MR-Imaging, Neural Networks, Neuro-Oncology, Quantification, Segmentation© RSNA, 2021.

7.
Front Comput Neurosci ; 13: 84, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31920609

RESUMO

An important challenge in segmenting real-world biomedical imaging data is the presence of multiple disease processes within individual subjects. Most adults above age 60 exhibit a variable degree of small vessel ischemic disease, as well as chronic infarcts, which will manifest as white matter hyperintensities (WMH) on brain MRIs. Subjects diagnosed with gliomas will also typically exhibit some degree of abnormal T2 signal due to WMH, rather than just due to tumor. We sought to develop a fully automated algorithm to distinguish and quantify these distinct disease processes within individual subjects' brain MRIs. To address this multi-disease problem, we trained a 3D U-Net to distinguish between abnormal signal arising from tumors vs. WMH in the 3D multi-parametric MRI (mpMRI, i.e., native T1-weighted, T1-post-contrast, T2, T2-FLAIR) scans of the International Brain Tumor Segmentation (BraTS) 2018 dataset (n training = 285, n validation = 66). Our trained neuroradiologist manually annotated WMH on the BraTS training subjects, finding that 69% of subjects had WMH. Our 3D U-Net model had a 4-channel 3D input patch (80 × 80 × 80) from mpMRI, four encoding and decoding layers, and an output of either four [background, active tumor (AT), necrotic core (NCR), peritumoral edematous/infiltrated tissue (ED)] or five classes (adding WMH as the fifth class). For both the four- and five-class output models, the median Dice for whole tumor (WT) extent (i.e., union of AT, ED, NCR) was 0.92 in both training and validation sets. Notably, the five-class model achieved significantly (p = 0.002) lower/better Hausdorff distances for WT extent in the training subjects. There was strong positive correlation between manually segmented and predicted volumes for WT (r = 0.96) and WMH (r = 0.89). Larger lesion volumes were positively correlated with higher/better Dice scores for WT (r = 0.33), WMH (r = 0.34), and across all lesions (r = 0.89) on a log(10) transformed scale. While the median Dice for WMH was 0.42 across training subjects with WMH, the median Dice was 0.62 for those with at least 5 cm3 of WMH. We anticipate the development of computational algorithms that are able to model multiple diseases within a single subject will be a critical step toward translating and integrating artificial intelligence systems into the heterogeneous real-world clinical workflow.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...